COOLING OF A VOLATILE LIQUID THROUGH
WHICH A GAS IS BUBBLED

B. N. Yudaev, O, V., Tsirlin, UDC 536.247
and A. A. Yushkin

A method is proposed for calculating the temperature in the two-phase system consisting of
a volatile liquid through which a gas is being bubbled. Some results are given for the water —
air system.

Bubbling, or the passage of a gas through a liquid, is widely used in heat- and mass-transfer pro-
cesses in many branches of industry (the'chemical, petrochemical, and food industries, for example),
When a gas is injected into a liquid, the liquid evaporates within the gas bubbles and is consequently cooled.
This method is convenient for use e.g., in cooling liquid hydrogen and liquid oxygen. As the bubbles rise
through the liquid, surface-active substances are adsorbed at the gas—liquid interface and then carried to
the liquid surface. Bubbling devices could thus be used instead of expensive cooling towers to cool and
purify waste water. Similar processes are involved in artificial hearts and lungs, in which blood is satu-
rated with oxygen, The mass- and heat-transfer processes accompanying bubbling are thus of considerable
interest.

We consider a system (Fig. 1) consisting of a liguid and a gas moving in a vertical vessel which is
subjected to an external heat flux, We are to determine the temperature of the liquid leaving the vessel,
The gas bubbles formed at the nozzles move at velocities U, ~ 25 cm/sec with respect to the liquid [1-3];
the bubbles reach these steady-state velocities after a time t; ~ 10™° sec [2]. We thus know the time t, the
bubble spends in the vessel if we know the liquid level and the liquid flow rate; in typical devices this time
is orders of magnitude larger than t;. Heat and mass transfer between a single gas bubble and a liquid
have been studied previously, e.g., in [1, 4, 5]. The characteristic time ¢, for these processes in the
case of volatile liquids is some 107%-1072 sec, which is again orders of magnitude smaller than the typical
values of t,. It follows from these comparisons that in estimating the efficiency of the cooling system we
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—_— = = - Fig. 1. Diagram of the cooling process. 1) Inlet
—7— __5—&:_\__—— —— | for the liquid, component A, and the gas dissolved
g — ;=7 — in it, component B, at molar flow rates of na; and
4 /VB‘__:—U: _— i, enthalp1es hA1 and h ;» respectively; 2) inlet
=< - for the gas, component B and the vapor of compo-
= nent A carried with it, at molar flow rates of n
s ~°
g =ttty N and n" , i and enthalp1es hBl and h') A’ reSpectxvely,
o0 o] 3) gas of composition X"; 4) liquid of composition
il ; “7 | X 5)drain for liquid A and the gas B dissolved in
T - 1= 7 it; 6) drain for gas B and the vapor A carried with
? it; 7) external heat flux q,.
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can begin from the assumption that a thermodynamic phase equilibrium is reached instantaneously;i.e., we
can assume that each parameter involved in the process has the same value at all points in the workmg
volume.

We also assume that the liquid and gas flow rates are constant and that the cooling is isobaric and
reversible; we expect temperature changes over narrow ranges (some tens of degrees), so that the specific
heats of the components as well as the latent heats of vaporization and dissolution (of the gas in the liquid)
are constant, independent of the temperature; and we assume the external heat flux q o (Fig. 1) to be con-
stant and specified. Some investigators (e.g., Bykov [6]) emphasize that the gas bubbles cause extensive
mixing of the liquid as they rise; the external heat flux is thus essentially equivalent to a set of heat sources
distributed uniformly throughout the liquid.

The continuity equations for the two components are
na=np—ns 1)
np = g —ng. (2)

For an isobaric process the first law of thermodynamics yiélds

Qo0 =Gy + dp + Go— 90— g + 4o (3)
We rewrite this equation in parametric form,
T(l—:— ;jzg[m 4B ] H o™ +F(1— Az R ) 4)
\ PG P ng ng catly,
and then in dimensionless form:
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where ® = T—-Ty /T ~Typ is the dlmensmnless temperature, Tp and Ty are the saturation temperatures
for components A and B, and we use the groups of parameters
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In Eg. (5), which is our basic equation for calculating the properties of the cooling process, we as-
sume that we know the m1t1al values of I, B, P, G F, J, H, and E. We must keep in mind that the ratms
of the vapor flow rate nA and the gas flow rate " out of the vessel to the gas flow rate at the inlet, nB,

are functions of the temperature. The particular functional dependences are governed by the xt = ¢(T)
and x" = ¢,(T) phase-equilibrium curves, which we assume to be known. '

We introduce the notation

, 1 —x'
=X =" =hH0), (6)
9 X
n, . 1— x*
=X = = [, (O), D
"4 X
where the mole fraction of component A in the gas phase is
g Ps
X ==
De ®

pg is the saturation vapor pressure of component A, p, is the external pressure, and x' is the mole frac-
tion of component A in the liquid phase,
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r - Differentiating (6) and (7) with respect to the time and
L I -’7 using (2), we find
b s - n, . .
s //2( // M ox e A x By (9)
! - fig Ty fig
4/ . . "
e , 1 A" n
1 - ® e
e We assumed above that the phase equilibrium is reached essen-
9z 04 a6 g8 xhx” tially instantaneously, so that there is no subsequent exchange

Fig. 2. Typical phase-equilibrium
diagram for components A and B.
1) Boiling curve; 2) condensation; 3)
line used to approximate the boiling
curve, x' =1—g(1-0); 4) line used
to approximate the condensation

of mass between the rising bubbles and the surrounding liquid:

K1=%m = 0.

The gas in the liquid reduces the overall specific heat of
the system; using the equation at the end of the previous para-
graph along with Eq. (1), we find from (9) and (10) that

curve, X" = @®. Here x' is the mole s _1_Xp + L (11)
fraction of component A in the ligquid e X
phase, and x" is the same in the gas i 1 X! X’

—_—— = e —— P — (12)
pha'se . n X// X// Xﬂ

B

Substituting (11) and (12) into (5) and solving the resulting equa-
tion, we find the temperatures of the liquid and the gas in the

vessel.

If the cooling is slight, i.e., if the temperature change of the liquid is slight (some tens of degrees),
we can replace this part of the phase-equilibrium curve by a straight line segment. In particular, near
the saturation point T =T, (Fig. 2) we could write

where ¢ = (9x'/ 00)

X" = e’

13)

¥=1-—e(1—0), (14)

substituting the result into (5), we find an equation for @:

is the slope of the boiling curve. Substituting (13) and (14) into (11) and (12) and then

a,0% - 2,0? 5- 0,0 +-a, = 0, (15)
where
1 ] 1 .
Qy =2¢ ( T g )’ (16)
/ 1 A o, &FAd A ) , , ‘
(11:: (\1 —}-—E/)[l——b(Q——Al)]-—-T)— 8(2 -"p) = P (1 - P)—S[?(PI _[-B"f J-;-- H) —fE]; (17)

¢FA
P

a, = eFA — ( 1+
PG

a;,=( 14+ ——

A

(A — 1 e(l—24)] — —- [1 —e(l + P)

1

(14 2P) = (2e — 1) [_‘;‘_ (PL B -7 = H) EJ‘ 18)

) (1—¢e) A4+ [—% (P1--B--J--H) —;—E} (I—z2). (19)

If, in this case of slight cooling, the initial liquid temperature differs significantly from the saturation
temperature, then the linear approximation of the phase-equilibrium curve leads o an equation for ® which
is of the same form as (15), except that Eqs. (13) and (14) and thus the equations for the coefficients a,

ay, ay, and a4 are slightly different.

In the particular case in which the gas is insoluble in the liquid or the latent heat of dissolution is

negligible in comparison with the latent heat of vaporization, we would have F = 0; then instead of Eq. (15)
we would have the following equation for @:

a0 - a0 - a, =0, (20)
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Fig. 3. Water temperature as a function of the relative air flow
rate. 1) Tpj = 99°C; 2) 90; 3) 80; 4) 50; 5) 20. The solid curves
are for Ty; = 20°C, and the dashed curves are for Tgj = 400°C.

Fig. 4. Critical value of the parameter B as a function of the
relative enthalpy of the liquid at the inlet for the water—air sys-
tem.

where the coefficients are found from (16)-(19) ‘for £ = 0. The solution of (20) is

—a,—V &2 — 4y, (21)

0= % .

The sign of the radical was chosen on the basis of physical considerations, For example, with a zero gas
flow rate and zero external heat flux, the vaiue of ® should remain equal to its initial value ®;, as it does
if we choose the minus sign; the plus sign corresponds to ® = 1, which cannot hold.

-Let us examine solution (21). Depending on the ratio of the liquid and gas enthalpies at the inlet, the
liquid can be either cooled or heated. It is clear from physical considerations that the ratio of the compo-
nent flow rates should not determine whether it is cooling or heating which occurs, so in determining the
dependence of the degree of cooling on the parameter 1/P we assume that the heat added to the system by
the gas is negligible; i.e., wesetl= (@;+A )/A, 1/G=0andB=0inEgs. (16)-(19). Then from (21) we

find
) B 12
1_'_(-);.-'-—%(]*}—1') V [1+@im—(1~—1)’ 4
O — — —0, 22
© ) i O 1. #2)

We see from this equation that as the gas flow rate is increased, i.e., as 1/P increases under otherwise
fixed conditions, the value of ® decreases. If the gas and liquid temperatures at the injet are the same,
we can substitute the parameter J into Eq. (22) in the form

0 (hy, — Piga)

(I— Ok,
We thus find that if the gas is already saturated vapor at the inlet there is no change in the temperature of
the liquid; i.e., ® = ®j. Obviously, we want to minimize J (maximize the initial dryness of the gas), If
these temperatures are approximately equal to each other and to the saturation temperature of the liquid,
then the injected bubbles turn out to be centers of vapor formation, Under such conditions the cooling is
most efficient (a formal analysis of (22) shows that ® should fend toward zero, but the liquid can be near
the saturation temperature only if heat is continuously supplied from without), The cooling is of course
intensified as the latent heat of vaporization increases: as A — », the dimensionless temperature ® tends
toward zero.
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We are particularly interested in determining the initial values of the parameters corresponding to
the most efficient cooling. We can evaluate this efficiency on the basis of the degree of cooling, i.e., the
difference between the initial and final values of ®:

: A
0, —1--—(@-+1
, S0+

0,—0 = i ¥®i~'—1’,‘__'é.: Tl 24_14;
5 ’L/[ s Ty U F5
%4H4&~na+m
“1—e, . 4., . Jii-e A =7 (23)
Lo+ 1)+ L —— (1D +—
5 T ap U] [ 2 o U 1)} P

We conclude from this latter equation that the cooling (6;—®) becomes more pronounced as the temperature
of the liquid at the inlet rises. Accordingly, the maximum temperature drop for a fixed ratio of flow rates,
1/P, is reached when the liquid is near the saturation temperature,

The parameter B is a measure of the enthalpy of the gas at the inlet; when B is large, the liquid be-
comes heated, since the amount of heat added by the gas is larger than the amount of heat expanded on
vaporization. The critical (in this sense) values B, = B(I) are governed by

0, —0=0. (24)
From this equation, which states that the temperature of the liquid at the drain does not differ from the ini-
tia] temperature of the liquid, we find an equation for the critical values of B:
B~ L A4
cr G I —(1A—A)
It should be noted that the parameter I varies in proportion to the dimensionless temperature (it is a linear
function of this temperature).

(25)

The parameter G is equal to the ratio of the molar specific heat of the liquid to that of the gas; for
most gases and liquids the specific heats are weak functions of the temperature, In our problem they are
determined from the initia] temperatures. Clearly, if the gas which is injected is cooler than the liquid,
it would be preferable to use a gas having a large specific heat; in the opposite case, a gas having a small
specific heat should be used.

In general, the dissolution of the gas in the liquid is accompanied by the evolution of heat, so that the
cooling will be less pronounced if the gas has a relatively low solubility, This point should be carefully
considered in cryogenic applications of this cooling method. For example, gaseous helium (not gaseous
nitrogen, which is more soluble) should be used to cool liquid oxygen or liquid hydrogen by bubbling.

It is also interesting to note how the degree of cooling depends on the shape of the phase-equilibrium
curve. Where we can use the linear approximation of this curve and where we can neglect the effects
of the absolute values of the saturation temperatures of the components, this dependence is characterized
by the slope of the curve, k = (0T /ax")p, where Tg is the saturation temperature for the given value of x",
To write the degree of cooling, AT =T;-T, as a function of k, we set E =B =J =H =F =0 in (5) and write
the solution of this equation as

.. ; : hfz‘ZA : : : higA |2 hng . k )
Tas Tk o Volrsroes o [ —a(r et —amam,r, 26)
2 2

AT = Ty —

It follows that as k increases (k — =) AT — T and T — 0; i.e.. a pronounced cooling is achieved through
the use of liquids having relatively steep phase-equilibrium diagrams. As the saturation temperature in-
creases, the degree of cooling becomes larger and larger, approaching a maximum as the critical state is
approached.

If the cooling of the liquid is very pronounced, it is better to reproduce large parts of, or even the
entire, equilibrium curve in a common analytic form. The basic difficulty involved here is that the gas
saturation temperature can be found from the available experimental data only approximately, by extra-
polating the curve to the point at which the amount of vapor of the liguid in the gas is assumed to vanish,
In particular, for the water—air systemthis state corresponds to a temperature Ty =—60°C. Then the
equilibrium curve is described by
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X = O3, 27)
This dependence gives a good description of the phase equilibrium for any external pressure. Using (27)
and neglecting the quantities & and F (air dissolves poorly in water and has a low latent heat of dissolution),
we find the following equation for the temperature of the water—air system:

al@"' — 0265 — al(—) — dy = O’ ’ (28)

where the coefficients ay, a;, anda; are again found from (16)-(19). Figure 3 shows a solution found nu-
merically for Eq. (28); 2s 1/P increases, the temperature decreases. There is evidently 2 value of I such
that the final temperature of the liquid is higher than its initial temperature. The cooling is more intense
at low ratios of the gas flow rate to the liquid flow rate than at large values of this ratio. If the object of
the process is not so much to achieve a large temperature drop as it is to remove heat at a high liquid flow
rate, or at a large throughput, it is best to use small values of the parameter 1 /P. The refined data con-
firm the qualitative conclusion reached on the basis of the simplified equilibrium curve, For example, for
given values of 1 /P and B, the cooling becomes more pronounced as the temperature of the ligquid at the in-
et increases.

Numerical methods have led to gquite accurate calculations of the theoretical values of Bgp. To de-
termine them, we replace ® in (28) by @;; we then find (25). Figure 4 shows the B,,. = B, (I) dependence.
As expected, at values of I corresponding to the saturation temperature, the final temperature of the liquid
differs little from its initial temperature, even if the temperature of the gas at the inlet is very high,

This method for calculating the temperature in cooling systems based on bubbling can be extended to
any pairs of components and to mixtures,

NOTATION

n is the number of moles of the given component, kmoles;
n is the molar flow rate, kmoles /sec;

g . is the heat supplied per unit time to the system, kJ/sec;
T is the temperature, °C;

C is the partial molar specific heat, kJ/(kmole -deg);

h is the partial molar enthalpy, kJ/kmole;

hng is the partial molar latent heat of vaporization, kJ/kmole;
hfgp is the partial molar latent heat of dissolution, kJ/kmole;
X is the ratio of mole fractions;

X is the mole fraction of component A;

P is the pressure, N/m?;

£ = (8x'/89)p is the siope of the boiling curve;

k =(3Tg /axw)p is the slope of the condensation curve,

Subscripts

is the surrounding medium;
is the component A;

is the component B

is the inlet conditions;

is the saturation line;

is the gas phase;

is the liquid phase.

SEra g
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